44 research outputs found

    Plasmodium Purine Metabolism and Its Inhibition by Nucleoside and Nucleotide Analogues

    Get PDF
    International audienceMalaria still affects around 200 million people and is responsible for more than 400,000 deaths per year, mostly children in subequatorial areas. This disease is caused by parasites of the Plasmodium genus. Only a few WHO-recommended treatments are available to prevent or cure plasmodial infections, but genetic mutations in the causal parasites have led to onset of resistance against all commercial antimalarial drugs. New drugs and targets are being investigated to cope with this emerging problem, including enzymes belonging to the main metabolic pathways, while nucleoside and nucleotide analogues are also a promising class of potential drugs. This review highlights the main metabolic pathways targeted for the development of potential antiplasmodial therapies based on nucleos(t)ide analogues, as well as the different series of purine-containing nucleoside and nucleotide derivatives designed to inhibit Plasmodium falciparum purine metabolism.

    Potent in vivo anti-malarial activity and representative snapshot pharmacokinetic evaluation of artemisinin-quinoline hybrids

    Get PDF
    BACKGROUND:Because Plasmodium falciparum displays increase tolerance against the recommended artemisinin combination therapies (ACT), new classes of anti-malarial drugs are urgently required. Previously synthesized artemisinin-aminoquinoline hybrids were evaluated to ascertain whether the potent low nanomolar in vitro anti-plasmodial activity would carry over in vivo against Plasmodium vinckei. A snapshot pharmacokinetic analysis was carried out on one of the hybrids to obtain an indication of the pharmacokinetic properties of this class of anti-malarial drugs. METHODS: In vitro activity of hybrids 2 and 3 were determined against the 3D7 strain of P. falciparum. Plasmodium vinckei-infected mice were treated with hybrids 1 - 3 for four days at a dosage of 0.8mg/kg, 2.5mg/kg, 7.5mg/kg or 15mg/kg intraperitoneally (ip), or orally (per os) with 2.7mg/kg, 8.3mg/kg, 25mg/kg or 50mg/kg. Artesunate was used as reference drug. A snapshot oral and IV pharmacokinetic study was performed on hybrid 2. RESULTS: Hybrids 1 - 3 displayed potent in vivo anti-malarial activity with ED50 of 1.1, 1.4 and <0.8mg/kg by the ip route and 12, 16 and 13mg/kg per os, respectively. Long-term monitoring of parasitaemia showed a complete cure of mice (without recrudescence) at 15mg/kg via ip route and at 50mg/kg by oral route for hybrid 1 and 2, whereas artesunate was only able to provide a complete cure at 30mg/kg ip and 80mg/kg per os. CONCLUSIONS: These compounds provide a new class of desperately needed anti-malarial drug. Despite a short half-life and moderate oral bioavailability, this class of compounds was able to cure malaria in mice at very low dosages. The optimum linker length for anti-malarial activity was found to be a diaminoalkyl chain consisting of two carbon atoms either methylated or unmethylated

    Properties and mechanism of action of choline analogues, a new class of antimalarials. Study of the clinical candidate albitiazolium.

    No full text
    Les analogues de choline constituent une nouvelle classe d'antipaludiques qui inhibent la biosynthèse de la phosphatidylcholine (PC) de Plasmodium, parasite responsable du paludisme. Les études conduites ont mis en relief des particularités uniques de ces composés. Nous avons élucidé le mécanisme d'action biochimique de l'albitiazolium, actuel candidat clinique, caractérisant chacune des 5 étapes conduisant à la biosynthèse de PC. L'albitiazolium affecte en premier lieu l'entrée de choline dans le parasite intraerythrocytaire, choline et albitiazolium utilisant le même transporteur et affecte de façon différentielle les autres étapes de synthèse. L'activité antipaludique est fortement antagonisée par la choline indiquant que le mécanisme d'action primaire est bien l'inhibition de la synthèse de PC. L'accumulation des analogues de choline dans le parasite intracellulaire leur permet de restreindre leur toxicité aux seuls érythrocytes infectés. Des études comparatives réalisées chez Plasmodium et Babesia montrent une double compartimentation de l'albitiazolium uniquement chez Plasmodium, l'une d'elles correspondant à la vacuole digestive. L'accumulation chez Plasmodium est glucose-dépendante et exige aussi le maintien des gradients ioniques dans la cellule. Bien que les analogues de choline exercent leur effet antiparasitaire dès les premières heures de contact, l'effet dit « cheval de Troie » exige des conditions particulières pour les mesures d'activités pharmacologiques, nous amenant à comparer différents tests d'activité. Seuls les tests isotopiques basés sur l'incorporation d'hypoxanthine ou d'éthanolamine après un cycle parasitaire entier et le test fluorescent au SYBR green appliqué après 72h obtiennent des résultats fiables quel que soit le mécanisme d'action des antipaludiques. Enfin, des études de pharmacocinétique / pharmacodynamie montrent une exposition plasmatique supérieure chez les souris infectées par Plasmodium, due au recyclage de l'albitiazolium après son accumulation dans l'érythrocyte infecté.Choline analogues form a new class of antimalarial drugs that inhibit the biosynthesis of phosphatidylcholine (PC) in Plasmodium, the malaria-causing parasite. The studies presented here highlighted the unique features of these compounds. We elucidated the biochemical mechanism of action of albitiazolium, the current clinical candidate, characterizing each of the 5 steps leading to the biosynthesis of PC. Albitiazolium primarily affects the entry of choline into the intraerythrocytic parasite and choline and albitiazolium use the same carrier. The other steps of synthesis are differentially affected. Antimalarial activity is strongly antagonized by choline indicating that the primary mechanism of action is the inhibition of PC synthesis Accumulation of choline analogs in the intracellular parasite allows them to restrict their toxicity to infected erythrocytes. Comparative studies in Plasmodium and Babesia show a double compartmentalization of albitiazolium only in Plasmodium, one of them corresponding to the food vacuole. Accumulation in Plasmodium is glucose-dependent and requires maintaining ionic gradients in the cell.Although choline analogues exert their antiparasitic effect in the first hours of contact, the “Trojan horse effect” requires specific conditions for the determination of pharmacological activity, leading us to evaluate various tests of activity. Only the isotopic tests based on hypoxanthine or ethanolamine incorporation after one parasite cycle and the fluorescent SYBR green assay applied after 72 hours give reliable results regardless of the mode of action of the tested antimalarials. Finally, pharmacokinetics/pharmacodynamics studies in Plasmodium-infected mice revealed that albitiazolium is recycled after its accumulation in the infected erythrocyte leading to increased plasma levels

    Propriétés et mécanisme d'action des analogues de choline, une nouvelle classe d'antipaludiques. Etude de l'albitiazolium, candidat clinique.

    No full text
    Les analogues de choline constituent une nouvelle classe d'antipaludiques qui inhibent la biosynthèse de la phosphatidylcholine (PC) de Plasmodium, parasite responsable du paludisme. Les études conduites ont mis en relief des particularités uniques de ces composés. Nous avons élucidé le mécanisme d'action biochimique de l'albitiazolium, actuel candidat clinique, caractérisant chacune des 5 étapes conduisant à la biosynthèse de PC. L'albitiazolium affecte en premier lieu l'entrée de choline dans le parasite intraerythrocytaire, choline et albitiazolium utilisant le même transporteur et affecte de façon différentielle les autres étapes de synthèse. L'activité antipaludique est fortement antagonisée par la choline indiquant que le mécanisme d'action primaire est bien l'inhibition de la synthèse de PC. L'accumulation des analogues de choline dans le parasite intracellulaire leur permet de restreindre leur toxicité aux seuls érythrocytes infectés. Des études comparatives réalisées chez Plasmodium et Babesia montrent une double compartimentation de l'albitiazolium uniquement chez Plasmodium, l'une d'elles correspondant à la vacuole digestive. L'accumulation chez Plasmodium est glucose-dépendante et exige aussi le maintien des gradients ioniques dans la cellule. Bien que les analogues de choline exercent leur effet antiparasitaire dès les premières heures de contact, l'effet dit cheval de Troie exige des conditions particulières pour les mesures d'activités pharmacologiques, nous amenant à comparer différents tests d'activité. Seuls les tests isotopiques basés sur l'incorporation d'hypoxanthine ou d'éthanolamine après un cycle parasitaire entier et le test fluorescent au SYBR green appliqué après 72h obtiennent des résultats fiables quel que soit le mécanisme d'action des antipaludiques. Enfin, des études de pharmacocinétique / pharmacodynamie montrent une exposition plasmatique supérieure chez les souris infectées par Plasmodium, due au recyclage de l'albitiazolium après son accumulation dans l'érythrocyte infecté.Choline analogues form a new class of antimalarial drugs that inhibit the biosynthesis of phosphatidylcholine (PC) in Plasmodium, the malaria-causing parasite. The studies presented here highlighted the unique features of these compounds. We elucidated the biochemical mechanism of action of albitiazolium, the current clinical candidate, characterizing each of the 5 steps leading to the biosynthesis of PC. Albitiazolium primarily affects the entry of choline into the intraerythrocytic parasite and choline and albitiazolium use the same carrier. The other steps of synthesis are differentially affected. Antimalarial activity is strongly antagonized by choline indicating that the primary mechanism of action is the inhibition of PC synthesis Accumulation of choline analogs in the intracellular parasite allows them to restrict their toxicity to infected erythrocytes. Comparative studies in Plasmodium and Babesia show a double compartmentalization of albitiazolium only in Plasmodium, one of them corresponding to the food vacuole. Accumulation in Plasmodium is glucose-dependent and requires maintaining ionic gradients in the cell.Although choline analogues exert their antiparasitic effect in the first hours of contact, the Trojan horse effect requires specific conditions for the determination of pharmacological activity, leading us to evaluate various tests of activity. Only the isotopic tests based on hypoxanthine or ethanolamine incorporation after one parasite cycle and the fluorescent SYBR green assay applied after 72 hours give reliable results regardless of the mode of action of the tested antimalarials. Finally, pharmacokinetics/pharmacodynamics studies in Plasmodium-infected mice revealed that albitiazolium is recycled after its accumulation in the infected erythrocyte leading to increased plasma levels.MONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF

    Exploring prodrug approaches for albitiazolium and its analogues.

    No full text
    International audienceCholine analogues such as bis-thiazolium salts are thought to inhibit choline transport into Plasmodiuminfected erythrocytes, thus preventing parasite PC biosynthesis, and also to interact with plasmodial haemoglobin degradation in the food vacuole. This new and multiple mode of action is a major asset of these new class of antimalarials, as they could help delay resistance development. We synthesized and designed various sets of analogues, notably prodrugs, since the oral bioavailability of bis-thiazolium salts is relatively low. The chemistry underlying this synthesis relies on inexpensive and readily available starting materials and is straightforward. This is essential since the ultimate objective is to obtain affordable and orally available drugs for uncomplicated malaria treatment

    Choline Analogues in Malaria Chemotherapy

    No full text
    International audienceEmerging resistance against well-established anti-malaria drugs warrants the introduction of new therapeutic agents with original mechanisms of action. Inhibition of membrane-based phospholipid biosynthesis, which is crucial for the parasite, has thus been proposed as a novel and promising therapeutic strategy. This review compiles literature concerning the design and study of choline analogues and related cation derivatives as potential anti-malarials. It covers advances achieved over the last two decades and describes: the concept validation, the design and selection of a clinical candidate (Albitiazolium), back-up derivatives while also providing insight into the development of prodrug approaches

    Phenobarbital induces cytochrome P4501A2 hnRNA, mRNA and protein in the liver of C57BL/6J wild type and aryl hydrocarbon receptor knock-out mice

    Get PDF
    AbstractThe aryl hydrocarbon receptor mediates the transcriptional response to a variety of hydrocarbons of members of the aryl hydrocarbon gene battery. Phenobarbital does not bind the aryl hydrocarbon receptor with high affinity but induces, in liver cells, expression of cytochrome P4501A. Using both wild type and aryl hydrocarbon receptor knock out C57BL/6J mice, we demonstrate that phenobarbital induced hnRNA, mRNA and protein for the cytochrome P-4501A2 gene in the presence or absence of the aryl hydrocarbon receptor. Using the DNA binding site for the aryl hydrocarbon receptor as a probe, gel retardation analyses showed that phenobarbital treatment induced protein binding, regardless of the presence of the aryl hydrocarbon receptor

    Synthesis and antimalarial activity of new 1,12-bis(N,N'-acetamidinyl)dodecane derivatives.

    No full text
    Amidoxime and O-substituted derivatives of the bis-alkylamidine 1,12-bis(N,N'-acetamidinyl)dodecane were synthesized and evaluated as in vitro and in vivo antimalarial prodrugs. The bis-O-methylsulfonylamidoxime 8 and the bis-oxadiazolone 9 derivatives show relatively potent antimalarial activity after oral administration
    corecore